Approximation of a Discrete Event Stochastic Simulation Using an Evolutionary Artificial Neural Network
نویسنده
چکیده
A computer simulation model may be regarded as a mapping function bietween a set of input and output variables. Although simulation models are very popular experimentation tools, in many cases they are computationally expensive. Hence, it would be essential to have fast, accurate approximation of computer simulation. This paper examines the use of an evolutionary artificial neural network for approximating a lot size – reorder point inventory system simulation. The proposed approach was compared with a Backpropagation trained neural network and multiple linear regression models.
منابع مشابه
Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملAppraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories
Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...
متن کاملA Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network
In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005